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ABSTRACT

The method of Ermakov and Zolotukhin is discussed along

with its later developments. By introducing the idea of

pseudo-implementation a practical assessment of the method

is made. The performance of the method is found to be un-

impressive in comparison with a recent regression method.
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On the Method of Ermakov and Zolotukhin for Multiple

Integration

by

R. Cranley and T. N. L. Patterson

I. Introduction

In this paper the method introduced by Ermakov and Zolotukhin

[1] and subsequently developed by Ermakov and Granovsky in a series of

papers will be discussed. The difficulties of implementation of these

methods in all but trivial circumstances have at present prevented

practical comparison with other methods. By introducing the idea of

pseudo implementation the practical performance of the original method

is assessed.

II. Resume and discussion of theory

The method of Ermakov and Zolotukhin [1] including a generaliza-

tion given by Ermakov [2] can be briefly described as follows. Consider

the multivariate function g(x) which can be expanded in the region D

in terms of the set _o(X), 1(x), .... . orthonormal with respect to

the weight p(x) according to, :%

g(x) = Z oi Oi(x) (1)
i=o

where,

f p(x) qi (x) j(x) dx = i.. (2)
D -_

and

ai = f p(x)g(x)O i(x) dx. (3)
D
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Ermakov and Zolotukhin [1] and Ermakov [2] define the random variable,

w(g, o, 2 x1 x ) (.
w (x 1 ...... x (4)

where, --n 40) xs..?O . .... ,_

where,

w(g, , x1 X ) =

and show that if x .... , x are

g (xl)

g (sampled

sampled

f L.(X1) 

from the

X', x' , ... xn)

(5)

* * n (xo)

* n (Xl)

density function

n

n p(xi)/(n+l)!
i=o

(6)

0 = mean (0) = I p(x) O (x) g (x) dx
D

var (0) = I p(x) g (x) dx-
D

n

i=o

Only the case p(x) = 1 has been discussed in the literature. There are

indications that var (0) can be considerably smaller than the variance

of the crude Monte Carlo estimator (Handscomb [3]).

The implementation of the method requires sampling to be

performed from the multivariate distribution function (6) comprising

(n+l)s variables, where s is the number of dimensions of the integral.

then

and

(7)

2
ai (8)

g(Io) l(Xo) -

f(o' Xl' .....' xn

) =

w 
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Such sampling could in principle be performed by the rejection technique

(Handscomb [3]) or by the use of conditional probabilities (Schreider

[9]) as suggested by the original authors. There is little doubt that

the former would be enormously inefficient while the latter would

require the analytical evaluation of a very large number of multiple

integrals involving the orthonormal basis functions which would generally

be intractable. Admittedly the sampling distribution (6) does not depend

on the integrand so that it might be possible to proceed by having tables

of random points available as suggested by Ermakov [2]. However, the

distribution does depend on the orthonormal basis, on the value of the

parameter n and on the dimension of the integrand so that the tables would

indeed be extensive. Additionally the dependence of the sampling distri-

bution on n would necessitate the discarding of all previous computational

labour should n be changed.

The problem has been discussed further in a series of papers

by Ermakov and others. It is shown that in principle the sampling

distribution of the general method can be modified to give a reduction in

variance for square summable functions (Ermakov [4]) when the number of

orthonormal functions, n, equals the multiplicity of the distribution

function N. The complexity of the sampling problem increases.

The case n < N is discussed by Ermakov [2]. It is shown that a

variance reduction can be achieved although again the sampling problem

increases in complexity and a least squares analysis has to be perform-

ed. The case n > N is also discussed by Ermakov [5J. The variance

can be reduced in this case by imposing relations between the nodes of
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the density function. For example, if in the 2-dimension case the ortho-

normal system of functions is taken to be a product of two systems of

one dimensional orthonormal systems and the sample points are confined

to a 2-dimensional grid then the variance of the resulting interpolatory

estimator is lower than that which would be obtained were the points

unrestricted. In this case the sampling problem reduces the selecting

points from two multivariate scalar functions, still a very consider-

able problem. However this reintroduces the difficulties associated

with the rapid growth of the number of integrand evaluations.

Following the approach of Ermakov [5], Granovsky [6] discussed

in detail random quadratures of the so-called Gaussian type which impose

a maximum number of relationships between the nodes of the Ermakov and

Zolotukhin general method. The sampling distribution depends then only

on a single node with consequent simplification. It is interesting to

note from one of Granovsky's examples,

1
f g(x)dx , (9)

-1

with the orthonormal functions,

%o(x) = ¢1(Xx) X '' (10)

the Gaussian type estimator is,

O - f(x) + f(-x) (11)
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with x uniformly sampled, viz. the simplest form of the antithetic

variate method. Ermakov and Zolotukhin in this case would obtain

1 f(x) - f(x)(12)

(x1 - x
o
)

where xo and xl are jointly sampled from

2 3 (X xo2 (13)

By introducing the generalized Haar functions as the orthonormal

basis Ermakov ([4], [7]) gives an elegant description of stratified

sampling. This discussion has also been given independently by Handscomb

[3]. As is well known the variance of these stratified estimators

is always an improvement on the Crude Monte Carlo.

In connection with sampling from the improved densities,

referred to as admissible randomized experimental designs, Granovsky

and Ermakov [8], it is noted that the problem can be reduced to a

sequence of linear programming problems provided that the density function

is defined on a finite set of points. In practice this can always be

made the case. However, admissible randomized experimental designs

have only been shown to exist under special circumstances, for example,

when the orthonormal system is the Haar system. Ermakov [6] discussed

this as a trivial case of his general discussion.

In the light of the difficulties associated with the implementa-

tion of these general methods, it would be of interest to gain some

feeling of general performance in practice. In contrast to the original

work of Ermakov and Zolotukhin [1], which provides closed forms for the
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quadrature rules, the later work (for example, Granovsky [6]) while

theoretically illuminating, fails at present to provide such forms. In

further discussion attention will thus be confined to assessment of the

original method.

III. General Discussion

In this section a number of points will be noted which must

be taken into account when assessing any Monte-Carlo method.

A common way of comparing two methods is by the accuracy

achieved with a given number of integrand evaluations. In general

if the integrand is of great computational complexity this means of

comparison will be useful. However if the integrand is of fairly simple

form the complexity of the logic of the method may dominate the computa-

tional labour so that integrand evaluations would not fairly compare

methods. In this paper it will be assumed that the former situation

holds, that is computational labour will be measured by the number

of integrand evaluations.

So called improved Monte Carlo methods are characterized by

their attempts to reduce the variance of Crude Monte Carlo estimator.

This can be achieved either implicitly or explicitly. Importance sampling

and the control variate methods typify the explicit reduction and an

automatic scheme using Bernstein polynomials has recently been introduced



7

by Rosenberg [10]. The antithetic variate method of Hammersley and

lauldon [11] and Cranley and Patterson [1]] typify implicit reduction.

Explicit methods proceed by directly transforming the integrand

to produce a new estimator which hopefully has smaller variance, The

labour invested in doing this is not utilized in subsequent sampling of

the new estimator. The variance reduction can in fact be minimal and

examples which show this can easily be constructed. This can be

especially serious in methods such as Rosenberg's where this labour

involves evaluations of the original integrand. In contrast, in the

implicit methods the process of variance reduction yields an estimate

of the integral without further sampling.

Since the variance reduction normally costs some integrand

evaluations it is important in comparing methods to consider not the

variance of the new estimator but rather the variance of its mean with

the same investment in integrand evaluations. For example the Ermakov

and Zolotukhin estimator has variance given by (8) but uses n+l integrand

evaluations per sample point. If the mean of 0 were evaluated with m

sets of random vectors then (n+l)m integrand evaluations would be

required. For the case Po(x) = 1 and p(x) = 1 it is easy to show that

with this investment in integrand evaluations the variance of the mean

of the Crude Monte Carlo estimator will be smaller than that of the

Ermakov and Zolotukhin estimator when the integrand g(x) satisfies,

n 2 n
E 2i < n ar (g) (14)

i=l
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It is not difficult to achieve -this condition. The simple function

-1 -1
g(x) = a cos 2p cos x + sin q cos x (15)

for x in [-1, 1] satisfies this requirement where q > 2p + 1,

n < 2p in (4) and

2 2 2 2
2 < pq (16p2 -1) (4p (16)

4(4q 2 -1) p
4
(8p2 -5)

IV. Pseudo-implementation

The difficulties of implementation of the Ermakov and

Zolotukhin method have been discussed by Handscomb [3] and only in

fairly trivial circumstances can the performance of the method be

directly assessed. However, in performing test integrations one usually

has information which could not in other circumstances be regarded as

being available - for example, the exact value of the integral! Taking

this a step further it is natural to ask if a knowledge of the Fourier

expansion coefficients of the test integrand could be used to predict

the results that would be obtained were the method directly implemented.

It is not difficult to see how this can be done.

Consider the estimator,

n

0(x) = {g(x) - Z a. o. (x)} / So(x) (17)
i=l i i - (

where a. are the Fourier coefficients of g(x) and where x is sampled

from the density function

f(x) = p(x) 2. (x) (18)
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It is easily shown that,

mean (0) = I p(x)o_(x) g(x) dx (19)
D

and
n

var () = p(x) g dx- (20)
D i=o

which are the same as for the Ermakov and Zolotukhin estimator (4).

Furthermore, 0, by definition, integrates exactly any linear combination

of ,o, ...., n' Thus 0 embodies the properties of (4) and hence can

be used to indirectly assess the Ermakov and Zolotukhin method. This

procedure will be termed pseudo-implementation. If attention is

restricted to the case when p(x) = 1 and ,O(x) = 1 then the pseudo-

implementation becomes particularly simple since x is then sampled

from the uniform distribution.

V. Experiments

In this section some results of pseudo-implementation of the

Ermakov and Zolotukhin method will be described. As a basis for

judgment of these results comparison will be made with a regression

method for Monte Carlo integration described by Cranley and Patterson

[12] which falls into the category of an implicit variance reduction

method. At this point a brief review of this method will be given.

Attention is restricted to the evaluation of integrals of

the form, 1 1

=

2
-

dxl .... dx
s

g(xl, ..... , XS) (21)

< s-1 -1
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Consider the estimator of 0 defined by,

m

e = Z ai Ti (x)
i=l

(22)

which is a weighted sum of basic unbiased estimators of 0, T i (x). The

estimator will be unbiased when,

m

(23)a. 1
1

i=l

The a. and 0*, the estimated mean of 8, are then calculated
1

such that,

N m
2

I{ Z ai T i (xj) - O* } = minimum

j=1 i=l

(24)

a straightforward linear least squares problem. The xj are uniformly

sampled. For simplicity attention is confined to the one dimensional case.

Eq. (22) will be referred to as estimator C when the Ti(x) are defined by

i

(25)Ti(x) = E1 g(x - i + 2j -1

j=l

and as estimator D when Ti(x) are defined by,

1= 
T2i (x) 2i

( = 1
(x) 2i+l

2i x-2i + 2j - 1
r g( 2i

j=l

2i+l

j=1

-x -2i+2j-2)
g ( 2i+1l

i = 1, 2, ... , [2 ] .

and

(26)

(27)
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It can be shown that C will integrate exactly all polynomials of degree

m-l using m(m+l)/2 integrand evaluations per sample point while D

integrates polynomials of degree 2m-1 using m(m+l) integrand evaluations

per sample point. When a polynomial basis is chosen, the Ermakov and

Zolotukhin method will integrate exactly the same class of functions.

Several other choices of Ti are discussed by Cranley and Patterson [12].

Estimator D has some useful and desirable properties. It

reduces the variance implicitly and so can be applied automatically.

It requires sampling only from the uniform distribution. No integrand

evaluations need be lost if either the sample size N or the number of

basic estimators m is increased.

For computational simplicity attention is limited to some

one dimensional integrals which have been considered in the literature

and to a polynomial basis. Apart from calculating the multivariate

orthonormal system, the pseudo-implementation could as easily be applied

to a multidimensional case. However, since the methods being compared can

integrate the same class of functions it would not be expected that there

would be any loss of generality.

The test integrals are given in Table 1. The first four were

chosen from Davis and Rabinowitz [13] and have since been used extensively

in tests. The fifth example has infinite variance which would lead to

a breakdown in the theory for both methods. Unlike the first four

integrands whose Fourier coefficients were computed numerically, it has

alconvenient Fourier expansion as does example six.
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In all cases and for each method the variance was estimated

using a very conservative sample size of 80. For the first four examples

the basic regression estimator D was used with 20 function evaluations per

sample point and has degree 7. The Ermakov and Zolotukhin estimator

with the same number of evaluations was used and has degree 19. For

the last two examples the regression estimator C was used with 21 integrand

evaluations per sample point and has degree 10. The Ermakov and Zolotukhin

estimator with degree 39 was used in this case. Twice as many orthonormal

functions were used to compensate for the fact that the functions were

even.

It is clear from the Table that the Ermakov and Zolotukhin method

does not emergy with any advantage over the easily implementable regression

scheme. Indeed, only in one case does a significant improvement appear.

Generally the regression method is better by several orders of magnitude.

It would appear from these rather limited experiments that the

improvements to the basic method of Ermakov and Zolotukhin would have to

be considerable to compete with the regression method. Although it could

be argued that a more suitable basis than the polynomial one could have

been chosen, in practice this would mean having extensive tables of random

points available from the relevant distributions. In anj'case there is

no obvious choice of basis for the general integrand.
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TABLE 1

1

Integration of | f(x)dx by regression.(R) and the Ermakov

0

Zolotukhin (EZ) method

1.2(-9) denotes 1.2
x 10-9

x 10

Function Error I Std. dev.

R EZ R EZ

x1/2 1.2(-9)* 4.2(-6) 1.3(-9) 2.2(-5)

x3/2 7.8(-11) 3.6(-8) 1.6(-10) 1.1(-7)

(1+0.5 sin 10x)
- 1

1.1(-6) 5.9(-3) 2.1(-6) 1.2(-2)

(1 + x4)- 1 3.8(-10) 2.8(-13) 1.3(-9) 3.4(-12)

[1-(2x - 1)2]1/2 3.9(-13) 1.5(-5) 3.5(-13) 1.9(-5)

[1-(2x - 1)2]- 1/2 9.6(-10) 2.8(-2) 1.1(-10) 3.3(-2)
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